
sshr: An SSH Proxy Server
Responsive to System Changes without Forcing Clients to Change

Hirofumi Tsuruta
SAKURA internet Inc.

Email: hi-tsuruta@sakura.ad.jp

Ryosuke Matsumoto
SAKURA internet Inc.

Email: r-matsumoto@sakura.ad.jp

Abstract—To respond to various requests from users, web ser-
vice infrastructure must change system configurations quickly
and flexibly without making users aware of the system con-
figuration. However, because SSH used as a secure remote
connection service to a server must send a connection request
by specifying the IP address or hostname of the server, the SSH
client must know the changed information when the IP address
or hostname is changed. To overcome this difficulty, a method
exists by which a client tool such as gcloud command obtains
the IP address or hostname of the destination server based on
unique label information of each server. However, this method
requires restrictions and changes to the tools used by the client
side. Another method is to use a proxy server, such as SSH
Piper, to obtain the IP address or hostname of the destination
server based on the SSH username. In existing SSH proxy
servers, the source code must be changed directly to change
the proxy server behavior. As described herein, we propose an
SSH proxy server which can follow system changes using hook
functions that can be incorporated by system administrators
without requiring restrictions or changes to the clients. The
proposed method has high extensibility for system changes
because the proxy server behavior can be changed easily
merely by modifying the hook function to be incorporated.
Furthermore, using the proposed method confirmed that the
overhead of establishing an SSH session is about 20 ms, which
is a short time during which the SSH client does not feel a
delay when logging into the server with SSH.

1. Introduction

As web services have become widely available in the
world, their number of users is increasing. As a result,
system administrators must change the configurations of the
managed systems quickly and flexibly according to the sit-
uation to respond to various requests from service users [4].
For example, when the number of accesses to web services
suddenly increases or decreases, the system administrator
responds to such changes by scale-out or scale-in servers
[12] to reduce opportunity loss and operation costs of the
services. Furthermore, with the expansion of web services,
it is also necessary to introduce new servers with new roles
[1]. It is necessary for service growth to change the system

configuration quickly and flexibly in response to changes in
the service environment.

For situations in which the system configuration must
be changed quickly in response to various demands for
services, the operation and management of the system must
also be capable of accommodating the change. However,
Secure Shell (SSH) [14], which is used widely as a secure
remote connection service to servers, requires SSH clients
to specify a server’s IP address or hostname to send a
connection request. Therefore, if the IP address or hostname
of the server is changed, then the administrator must inform
each client of the changed information. Each client must
therefore follow their changes.

Currently, several methods allow clients to connect to
the server with SSH without being aware of the IP address
and hostname of the destination server. One is a method by
which the client tool obtains the IP address or hostname of
the destination server based on the unique label information
for each server. An example is the gcloud command [6]
of Google Cloud Platform (GCP). Using this method, the
SSH client can connect to the target server transparently
using only the label information associated with the server
without necessitating awareness of the system configuration
and its changes. However, this approach forces SSH clients
to use special client tools such as the gcloud command.
Furthermore, when a change occurs in the client tool, all
clients must follow the change by upgrading the tool.

Another method is one by which a proxy server located
between the client and the server obtains the IP address or
hostname of the connection destination based on information
of the SSH request. For existing SSH proxy servers, open
source software called SSH Piper [2] exists. By connecting
with SSH via SSH Piper, the SSH client is not forced
to use special client tools. Furthermore, the SSH client
can connect to the target server associated with the SSH
username without having to be aware of the server’s IP
address, hostname, or its change. The issue of SSH Piper
is that the system administrator cannot freely incorporate
or change the logic for determining the connection server
based on the username. If the administrator wants to change
the logic for determining the connection server, then the
administrator must make changes directly to the source code
of SSH Piper. Therefore, the extensibility to system changes
is not high.



As described in this paper, we proposed an SSH proxy
server which can follow system changes using hook func-
tions that can be incorporated freely by system adminis-
trators without requiring either restriction or change of the
client tools used by SSH clients. The proposed SSH proxy
server was designated as sshr [8]. The sshr allows system
administrators to implement and incorporate hook functions
for determining the connection server freely based on the
SSH username. As a result, even if the IP address or host-
name of the destination server changes, the administrator
need not notify each client of the changed information. The
client always connects to the target server associated with
the username. Moreover, sshr has functions to extend the
user authentication required for establishing an SSH session.
For example, when sshr receives a request for public key
authentication from a client, the process used to seek the
client’s public key can be incorporated into sshr as a hook
function. This feature allows the system administrator to
manage the client’s public key in a free data format such as
a database. In this way, sshr can extend user authentication
of SSH protocol programmatically using hook functions.

This paper is configured as described below. Section 2
presents related works and their issues. Section 3 describes
the proposal given herein. In section 4, a use case with
the proposed method is described with specific examples.
Section 5 presents results of performance evaluation of the
proposed method. Finally, we summarize our contributions
in section 6.

2. Related Works

For situations in which the system configuration must
be changed quickly in response to various requests for
services, the operation and management of the system must
be able to accommodate the change. By contrast, for SSH,
if a change occurs in the server IP address or hostname,
the administrator must notify each client of the changed
information. The client must then acknowledge and accom-
modate the change. This section presents a summary of
existing methods to solve this SSH issue and describes their
features and problems.

2.1. SSH client tool

A command line tool for managing computing resources
on GCP is gcloud. By specifying the instance name with the
”gcloud compute ssh” command [7], the client can connect
to the target server by SSH. Actually, the ”gcloud compute
ssh” command is a wrapper for the ssh(1) command [15]. It
has the function of obtaining the IP address from the con-
figuration information managed by GCP using the instance
name as a key before sending an SSH request. Consequently,
if the SSH client knows the unique instance name for each
server, then the SSH client can connect transparently with
SSH without being aware of the IP address of the target
server or its change.

Another method is to use Consul [9], a cluster man-
agement tool developed by HashiCorp. Consul can manage

members in the cluster and an HTTP API to refer to the
member information. Using these functions, one can obtain
the IP address of a target server based on some tag informa-
tion defined by the administrator. Therefore, one can create a
client tool such as consult [11], which sends an SSH request
using the IP address obtained from the Consul HTTP API.

In both methods, the SSH clients can connect to the
target server using the label information provided for the
respective servers. Even if the IP address of the target server
is changed, the client tool can play the role of following
the change without the client being aware of the change.
However, these methods force the SSH clients to use special
SSH client tools such as the gcloud command. Therefore, if
the program of client tool must be changed in accordance
with the change on the system side, then all clients using
the tool are forced to make changes such as upgrading the
version of the tool.

2.2. SSH Proxy server

SSH Piper [2] is an SSH proxy server developed as open
source software on GitHub. A salient feature of SSH Piper
is that, when receiving an SSH request, the connection des-
tination server can be determined from the SSH username
by SSH Piper. When using SSH Piper for SSH connection,
if the SSH client knows only the IP address or hostname of
the proxy server using the SSH Piper, then the SSH client
can connect to the target server without being aware of the
server’s IP address or hostname, or related changes.

With SSH Piper, the role of determining the connection
destination is not assigned to the client tool but to the proxy
server. For that reason, no need exists to restrict the client
tools used by the SSH clients. Nevertheless, the system
administrator cannot freely implement and incorporate the
logic to determine the destination server. As a result, it is
not possible to design the data format freely to manage link
information between the SSH client and the SSH server.
For example, if the administrator wants to manage the link
information between the SSH client and the SSH server
in the database, then it would be necessary to prepare a
table schema defined by the SSH Piper. If the administrators
want to extend the logic for determining the connection
destination from the existing logic, then they must make
changes directly to the source code of the SSH Piper.

Another method to build an SSH proxy server that can
determine the connection destination such as SSH Piper is to
extend sshd [16], which is currently the most widely used
SSH server daemon program. Compared to implementing
a proxy server from scratch, the advantage of extending
sshd is that developers need not implement authentication
processes because they can reuse the highly reliable au-
thentication processes of sshd. However, because sshd does
not support a feature extension mechanism, developers must
make direct changes to the sshd source code to extend that
feature.

In neither method does the need exist to restrict the SSH
client tools. The SSH client can connect to the target server
associated with the SSH username. Even if the IP address



Figure 1. Schematic diagram of the proposed method.

of the target server is changed, the proxy server can play the
role of following the change without the clients being aware
of the change. One issue is that existing proxy servers do
not support the mechanism for function extension of proxy
servers. Therefore, the extensibility to system changes is not
high.

3. Proposed Method

As described in section 2.1, when the client tool plays
the role of accommodating the system change, the issue is to
restrict the client tool used by the SSH client. However, as
described in section 2.2, when the proxy server plays the role
of following the change, it requires no SSH client to restrict
the client tools. In fact, the issue is that the extendability
of the proxy server for the system change is not high. To
overcome these difficulties, we propose an SSH proxy server
that can follow the system changes using hook functions
that can be incorporated freely by the administrator without
requiring the client to limit or change the client tools used.

3.1. Architecture overview

In the proposed method, we adopted an architecture that
allows free incorporation by the system administrator of
the processing executed during the SSH request as hook
functions. Figure 1 is a schematic diagram of the proposed
method. The SSH proxy server receives the connection
request from the client and determines the destination server.
Results show that if the SSH client only knows the IP
address or hostname of the proxy server, then the client need
not be aware of the configuration of the system behind the
proxy server and its changes. From the viewpoint of the
system administrator, if the IP address or hostname of the
proxy server already provided to the client does not change,
then the system configuration can be changed freely without
notifying the client. Therefore, it is practical to assign a
virtual IP address to the load balancer placed in front of
the proxy server so that all SSH connections from clients
are accepted with the same IP address. Results show that,
even if the IP address of the proxy server changes, or if the
administrators want to scale out the proxy server, they need
not request any change for the SSH clients.

When connecting to a server with SSH, one must per-
form user authentication [13] to ascertain whether the client
has authority to use the target server. The proposed method
supports password authentication and public key authenti-
cation as authentication methods. When user authentication

is performed through a proxy server, how the proxy server
mediates authentication between the client and server dif-
fers depending on the authentication method. For password
authentication, the proxy server can send the request packet
to the SSH server without interpreting the authentication
request received from the client. Authentication is performed
on the SSH server. By contrast, for public key authenti-
cation, the proxy server cannot delegate authentication to
the SSH server. This is true because an SSH session has
a unique identifier for each session called a session ID
[13]. The data including the session ID are encrypted by
a private key to send an authentication request. The proxy
server has two SSH sessions between the client and the
proxy server and between the proxy server and the SSH
server. As one might expect, each has a different session
ID. Therefore, when performing public key authentication
via a proxy server, one must perform authentication in two
steps between the client and the proxy server and between
the proxy server and the SSH server.

With the proposed method, multiple hook functions with
a specific role can be incorporated into the SSH proxy
server. These functions are executed sequentially in the
process of processing the SSH request. As a hook function
that can be embedded for the proxy server, a function exists
that obtains the IP address or hostname of the connection
destination server based on the SSH username. Additionally,
it has a hook function to extend public key authentication
between the determined connection destination server and
client. Specifically, a function exists to search the client’s
public key used for the authentication between the client and
the proxy server. Also, a function exists to search the private
key used for the authentication between the proxy server
and the SSH server. Using these, the connection destination
determination and public key authentication in the SSH
proxy server can be programmably extended. Furthermore,
the system administrator can manage the link information
between the client and the server and the public key used
for authentication in a free data format such as a database.

3.2. Implementation

We developed an SSH proxy server called sshr [8] using
Go [5] to realize the proposed architecture. The proxy server
behavior can be extended by incorporating the function
implemented by the system administrator in Go into sshr.
Actually, sshr supports the following three hook functions.

(1) FindUpstreamHook
(2) FetchAuthorizedKeysHook
(3) FetchPrivateKeyHook

(1) is a function to obtain the IP address or hostname
of the destination server based on the SSH username. (2)
and (3) are hook functions required when using public key
authentication. (2) is a function to retrieve the client’s public
key. (3) is a function to retrieve the private key used to
authenticate to the destination server from the sshr server.
Details of the usage of (2) and (3) are described later.



An important issue in implementing an SSH proxy
server is how to perform authentication between the client
and server via the proxy server. As described in section
3.1, when public key authentication is used, authentication
must be performed in two steps between the client and
the sshr server and between the sshr server and the SSH
server. First, between the client and the sshr server, the sshr
server has a FetchAuthorizedKeysHook function to search
for the client’s public key. This function is equivalent to
AuthorizedKeysCommand of sshd. Using this, the system
administrator can centrally manage the client’s public key
in a free data format such as a database. Next, between the
sshr server and the SSH server, the sshr server has no client
private key. Therefore, it is necessary to use another private
key for sending the authentication request to the SSH server.
The first authentication step between the client and the sshr
server verifies that the client is allowed to connect to the
target server. Therefore, in the second authentication step
between the sshr server and the SSH server, the SSH server
permits all authentication requests using the specific private
keys having the sshr server. At this time, FetchPrivateKey-
Hook is provided as a hook function to seek the private key
used by the sshr server to authenticate to the SSH server.

Next, the procedures for sshr after successfully authen-
ticating and establishing the SSH session are described. The
hook functions embedded into sshr are all executed before
the SSH session is established. After session establishment,
sshr does not interpret the packets received from the client
and server. It only forwards the packets in both directions.
For this reason, it is assumed that the overhead because
of the execution of the hook function occurs when the SSH
session establishment. This point will be evaluated in section
5.

3.3. Security risks

The security risks of unauthorized access when using
sshr are discussed here. When password authentication is
used as the user authentication method, the sshr server
forwards the packet to the SSH server without reading the
password. In other words, only the SSH server knows the
client password and can authenticate. For that reason, using
the sshr server does not affect the risk of breaking through
the authentication.

Public key authentication requires two-step authentica-
tion for each session between the client and the proxy
server and between the proxy server and the SSH server. As
described in section 3.2, the SSH server accepts all requests
using the specific private keys of the sshr server. For this
reason, if one assumes that the security problem of the sshr
server or the vulnerability of the sshr daemon exists, then
the private key of the sshr server might be leaked, or any
command using the private key from a malicious user might
be executed.

To mitigate these risks, countermeasures are described
for each of the sshr server and the SSH server. First, in the
sshr server, the security of the server must be strengthened to
prevent leakage of the private key that it holds. For example,

Figure 2. Example of system configuration.

it is effective to minimize the number of users who can
access the sshr server and limit the IP address range that
is accessible only to the networks within the organization.
Next, to reduce the damage that occurs when a malicious
user executes an arbitrary command via sshr, it is useful
to run the sshr daemon as a user without root privileges.
This countermeasure is effective in restricting the operation
on the sshr server when an arbitrary command is executed.
However, the command is executed with the same authority
as the sshr daemon. Therefore, operation on the SSH server
is possible.

Next, as a countermeasure for the SSH server, remote
login as root user must not be allowed on the SSH server. For
example, with sshd, one can restrict remote login as root user
using PermitRootLogin of sshd config. This requirement
can limit the authority of operations on the SSH server.
It is also effective to restrict the connection source IP in
case the private key of the sshr server leaks to the outside.
For example, in the authorized keys file [16] of sshd, the
connection source IP can be restricted for each public key
[3]. Therefore, configuring the SSH server to allow connec-
tion only from the IP address of the sshr server is effective.
Results show that it is possible to prevent damage when the
private key of the sshr server leaks to the outside.

4. Use case

Figure 2 presents an example of a system configuration
which adopts the proposed method. Here, the explanation
for each role in Figure 2 is described. Because the Client
role has no restrictions on the client tools, ssh(1) command
[15] or a GUI-based SSH client is assumed to be used. In
addition, because no restrictions exist on the tools used for
the Server role, sshd [16] is assumed. The DB role is a
database server that manages the usernames of SSH clients
and the SSH servers. Using the proposed method, the client
can connect to the server associated with the username.
Therefore, the database manages the association between
the username and the hostname of the server. Furthermore,
manage the client’s public key in a database is useful to
authenticate the client’s public key on the sshr server. One
can refer to information stored in the database directly from
sshr, but it is also possible to refer to the information via
Web API. In this way, because sshr employs an architecture
that can extend the proxy server behavior programmatically
as hook functions, the method of acquiring information from
the database can be selected freely.

Because the sshr role has three executable hook func-
tions, the processing assumed for each is explained. First,
FindUpstreamHook used to determine the connection des-
tination obtains information of the destination server from



the Web API as an HTTP client. Next, FetchAuthorized-
KeysHook, which is used to search for the client’s public
key, performs processing to obtain the client’s public key
stored in the database via the Web API as an HTTP client.
Finally, FetchPrivateKeyHook, which searches for the pri-
vate key used to authenticate to the connection destination
server from the sshr server, is presumed to refer to the
private key stored in the local storage of the sshr server.
This is true because managing private keys in a database and
obtaining them via a network increases the risk of leakage.

When the system described above is constructed, follow-
ing the change of a system can be described with examples.
The following are examples of possible system changes.

(1) Change the server used by the specific client
(2) Change the table configuration in the database
(3) Change the Web API specifications

For (1), merely updating the information in the database
is sufficient. Because sshr refers to the association informa-
tion between the client and the server from the database at
each request, one can switch the connection destination of
the client merely by updating the information stored in the
database. For (2), it is sufficient to change the processing
of Web API in accordance with the change on table con-
figuration; sshr need not be changed. For (3), changing the
hook function of sshr is necessary. The system administrator
must modify the hook function according to the change of
Web API specifications and deploy the executable binary
file. As presented in the examples above, the proposed
method has high extensibility to system changes because
the proxy server itself need not be changed or the behavior
can be controlled merely by modifying the hook function
for various possible system changes.

5. Evaluation

In the proposed method, the processing of connection
destination determination and user authentication can be ex-
tended programmably. Actually, one can follow the system
changes without making the client aware of the change.
However, the hook function executed when the session es-
tablishment causes communication overhead. By measuring
this overhead, one can evaluate the effects of the proposed
sshr on the processing time of the SSH connection and
discuss whether sshr is useful in a practical environment.

The overhead is measured when the uname command
is executed via sshr and when the file is transferred by scp
(secure copy) via sshr. Only public key authentication is
used as the authentication method between the client and
the server. In the case of password authentication, sshr for-
wards the packet to the SSH server without interpreting the
authentication request received from the client. By contrast,
for public key authentication, a hook function is executed to
search for the client’s public key. Because of this difference,
public key authentication takes a longer time to authenticate
than password authentication. For that reason, evaluation is
performed under the condition that the overhead lengthens.

Figure 3. Schematic diagram of the experiment environment.

TABLE 1. EXPERIMENT ENVIRONMENT

Role Item Specifications
Client CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 1 core

Memory 1 GBytes
SSH Client OpenSSH 7.9

Server CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 1 core
Memory 1 GBytes
SSH Server OpenSSH 7.9

sshr CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 1 core
Memory 1 GBytes
sshr sshr v0.1.6

DB CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 1 core
Memory 1 GBytes
Database MySQL 5.7.27

Figure 3 portrays a schematic diagram of the experi-
mental environment. The experiment compares the normal
SSH connection between the client and server without sshr
and the SSH connection via sshr. Table 1 presents the
specifications and software versions of the respective roles.
The operating system (OS) of each role is CentOS 7.6.1810
Kernel 3.10.0. Each measurement of the execution time was
performed 100 times. The average value was calculated. The
hook functions executed by sshr refer to a remote database
server in both the connection destination determination pro-
cess (FindUpstreamHook) and the client’s public key search
process (FetchAuthorizedKeysHook). The database includes
no records other than the target record.

Table 2 presents measurement results of executing the
uname command. The overhead of executing the uname
command was 22 ms when sshr mediated the SSH con-
nection between the client and server. This time is suffi-
ciently short that the SSH client senses no delay [10] when
establishing the SSH session. Therefore, assuming system
management in which multiple clients log in to a specific
server and perform server operations, the overhead of sshr
is sufficiently small to use in a practical environment.

Figure 4 presents the relation between the file size
transferred by scp and the time taken for file transfer. When
transferring a 20 MB file, the overhead caused by sshr was
48 ms. This result indicates that the overhead caused by
sshr includes effects other than the hook function because
the overhead is larger than the result obtained by executing
the uname command. Furthermore, results demonstrate that

TABLE 2. MEASUREMENT RESULT OF UNAME COMMAND EXECUTION

Environment Execution time/ms (100 times average)
Client-server 448
Proposed method 470



Figure 4. Relation between the file size transferred by scp and the transfer
time.

the overhead increases as the file size increases. This result
is probably attributable to the overhead caused by the sshr
server forwarding the packet compared to sending the packet
directly from the client to the SSH server. However, when
particularly addressing the case of 100 MB file transfer, the
increased rate of transfer time is only about 0.9%. Moreover,
the ratio of overhead caused by sshr to the total transfer
time is small. Therefore, except for the case of transferring
numerous files via sshr, the overhead caused by sshr is
regarded as practically negligible.

With the public key authentication method, the sshr
server acquires the connection destination server and the
public key from the management data. The acquisition time
strongly affects the overhead. Therefore, if the response time
of a database or Web API is long, then the time required for
establishing an SSH session via sshr will increase accord-
ingly. In such cases, one must take measures to shorten the
response time.

6. Conclusion

In this paper, we proposed an SSH proxy server called
sshr, which can follow system changes using hook functions
that can be incorporated freely by system administrators
without requiring either restriction or change of the client
tools used by SSH clients. The system administrator can
freely implement and introduce a hook function for sshr
to ascertain the connection destination server from the SSH
username. Consequently, even if the IP address or hostname
of the destination server changes, the administrator need not
notify each client of the changed information. Moreover,
the client need not follow the change. Furthermore, sshr
employs an architecture that can programmably extend the
user authentication of the SSH protocol, such as incorpo-
rating a hook function to search for the client’s public key.
Therefore, the administrator can manage the client’s public
key in a free data format. Furthermore, experiments show
that the overhead of establishing an SSH session via sshr is
about 20 ms, which is a sufficiently short time that clients
do not sense a delay [10] when logging into the server.

Future studies will evaluate the usefulness of sshr
through the construction of a practical system to demonstrate

its benefits. Using the hook function, one can select the most
suitable destination server according to the surrounding situ-
ation. For example, it is possible to provide a server with the
lowest load by analyzing the load status of the servers using
machine learning. Next, the current sshr has a limitation that
one SSH username is associated with only one server. To
overcome this limitation, we plan to introduce a mechanism
in which sshr returns a list of servers associated with the
SSH username to the client, and the client can interactively
select a connection destination from the list.

Acknowledgments

We express our sincere gratitude to members of Hosting
Department, GMO Pepabo, Inc. for their great support and
advice in developing the sshr proposed in this paper.

References

[1] B. Furht and A. Escalante, Handbook of Cloud Com-
puting. Springer, 2010, ch. Service Scalability Over
the Cloud.

[2] Boshi Lian, SSH Piper, https : / / github.com/ tg123 /
sshpiper/.

[3] D. J. Barret, R. E. Silverman, R. G. Byrnes, SSH,
The Secure Shell: The Definitive Guide, 2nd. O’Reilly
Media, Inc., 2005, ch. A Recommended Setup.

[4] G. Galante and L. C. E. d. Bona, “A Survey on
Cloud Computing Elasticity,” in 2012 IEEE/ACM
Fifth International Conference on Utility and Cloud
Computing, 2012, pp. 263–270.

[5] Golang.org, The Go Programming Language, http :
//golang.org.

[6] Google Cloud Platform, gcloud command-line tool
overview, https://cloud.google.com/sdk/gcloud/.

[7] Google Cloud Platform, gcloud compute ssh, https://
cloud.google.com/sdk/gcloud/reference/compute/ssh.

[8] H. Tsuruta, sshr, https://github.com/tsurubee/sshr.
[9] HashiCorp, consul, https : / / github . com / hashicorp /

consul.
[10] J. Nielsen, Usability Engineering. Morgan Kaufmann

Publishers, 1993, ch. Response Times: The 3 Impor-
tant Limits.

[11] Outbrain, Consult, https : / / github . com / outbrain /
consult.

[12] T. Lorido-Botran, J. Miguel-Alonso, and J. A.
Lozano, “A Review of Auto-scaling Techniques for
Elastic Applications in Cloud Environments,” Journal
of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[13] T. Ylonen, The Secure Shell (SSH) Authentication
Protocol, RFC 4252, 2006.

[14] T. Ylonen, The Secure Shell (SSH) Protocol Architec-
ture, RFC 4251, 2006.

[15] The OpenBSD Foundation, ssh – OpenSSH SSH
client, https://man.openbsd.org/ssh.1.

[16] The OpenBSD Foundation, sshd – OpenSSH SSH
daemon, https://man.openbsd.org/sshd.8.


